REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden tor this
e nd tmaintalni

ot i

ing the data

d, and

is d to average ! howr ne'c response, including the time 10 review:
o coll of tnf. i

ng instructions, scarching esist1g data sources,
Sy

ga
collection af information, including

gestions for g thes 9 te
Davis Highway, Suite 1204, Arlington, VA 222014302. and to the Office of Management and Budg

ing and s g th

urd. Wash

[this burd {
ters Services, Olreciorate for information Operations ang Seports, 1215 Jeflerson
et. Paperwark Reduction Project (0704-0188), Washington, =€ 26503, .

estimate or anv other aspect of this

1. AGENCY USE ONLY (Leave blank)

2. REPORT OATE

November 23, 19%@

3. REPORT TYPE AND DATES COVERED - e
Final Report: May 1, '94 - Sept. 30, '9¢

4. TITLE AND SUBTITLE

Fault-tolerant and Real-time Distributed Computing

5. FU

6. AUTHOR(S)

Fred B. Schneider

NDING NUMEERS

(Grant)
F49620-94-1-0198

Cornell Uni&ersity
Ithaca, NY 14853

! 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFOSR

- Bolling AFB
Washington, DC

Y. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

110 Duncan Ave., Suite B115

20332-0001

L 17. SUPPLEMENTARY ROTES

i

- 122, L'STRIBUTION AVAILABILITY STATEMUENT

Approved for Public Release;
Distribution Unlimited

10. SPONSORING . MONITCRING
AGENCY REPORT NUNMSER

(Grant)

F49620-94-1-0198

6 0

TaRM. WIIIRIOU 'Lt Luill

UL

» 13. ABSTRACT (Meximum 260 words)

Progress was made on a number of problems in the areas of fault-tolerant and
real-time computing. Programming logics were investigated for reasoning about
distributed programs that must satisfy real-time constraints, must interact with

a continuous physical environment, and whose correctness depends on properties

of schedulers and degree of resource contention. A new approach to fault tolerance,
based on a virtual machine monitor was developed. It provides fault-tolerance
without requiring modifications to hardware or software. Finally, software to
support mobile network agents was developed and released. Algorithms to

implement agent fault-tolerance were developed.

DTIC QUALITY INspRorg, 3

14. SURBIECT TERMS

15. NUMZER CF PAGES

16. PRICE CO0O¢

£
£
;
'

17. SECURITY CLASSIFICATION
i QOF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABST‘RACT

SAR

S O T

NSN 7540-01-280-5500
£/€°d

WATT 6D

Starcarc *9-— 2% 3ev 2.89"
QA RTANK

Final Report
Research on Fault-tolerant and Real-time Computing
AFOSR Grant F49620-94-1-0198

Fred B. Schneider

Department of Computer Science
Cornell University
Ithaca, New York 14853

1. Introduction

Under the auspices of this AFOSR funding, research was performed on a variety of topics
related to the implementation of fault-tolerant, real-time, and embedded control software for distri-
buted systems. The research had theoretical as well as practical components:

e Programming logics, formal methods, and programming methodology. We investigateed pro-
gramming logics to support the analysis of distributed programs that must satisfy real-time con-
straints, must interact with a continuous physical environment, and whose correctness depends
on properties of schedulers and degree of resource contention.

e Fault-tolerance. We invented and prototyped a new approach to supporting replication
management. It is based on modifying a virtual machine monitor that runs below an operating
system. We have also devised a new approach to analyzing a system’s fault-tolerance.

e Agent-based Computing. We started studying a new paradigm for structuring distributed sys-
tems: the use of mobile agents. A series of prototype systems were implemented and released,
and algorithms for constructing fault-tolerant agents were developed.

The work led to 20 publication, which are listed at the end of this report. One patent was granted, and
a second patent disclosure was filed and remains pending.

2. Formal Methods

Our work in formal methods was driven by the desire to make logics a usable tool for system
developers. Mastery of ordinary first-order logic is required to use most formal methods. Because it
is a stumbling block for so many, we investigated ways to make that logic more accessible. This led
to our equational presentation of the logic, called E, and a sophomore-level discrete mathematics text.
We have since thoroughly explored the axiomatization, use, and teaching of E, and we are slowly
generalizing the logic and approach. For example, we developed an equational reasoning apparatus
for Dijkstra’s "everywhere" (i.e. "is valid") operator. Not only does the new axiomatization extend
calculational reasoning to a broader setting, but it reveals a surprising property of logical systems:
axiomatizations based on schemas need not be equivalent to employing a substitution inference rule
in concert with a finite number of axioms.

The leverage of formal methods is greatest for programming problems that are small and intri-
cate, because brute-force methods do not work there. Process control programs are an example of
such programs. For that reason, we investigated methods for extending extant formal methods to this
setting. And we discovered two principles for analyzing programs whose executions are affected by
an environment. These principles have now been used for verifying real-time behavior of concurrent

-1-

programs constrained by schedulers and limited resources; they have also been used for verifying
hybrid systems, systems involving continuous physical processes as well as discrete control.

Finally, we made progress on a new characterization of system refinement. The construction of
a system usually involves a sequence of steps where abstractions are replaced by implementations.
Of interest is a method to establish that this replacement preserves a specification. A variety of
methods have been proposed. One, based on refinement mappings, is methodologically attractive.
However, it was restricted to specifications that exhibit "finite non determinism" and were formulated
as separate safety and liveness properties. We have shown that neither restriction was necessary; we
have extended the method and eliminated both requirements.

3. Fault-Tolerance

All schemes for implementing fault tolerance involve some form of replication, where replicas
are assumed to fail independently. The key engineering issue that the designer of a fault-tolerant
computing system must address is deciding where in the system to implement replica coordination.
We have developed a new set of replica-coordination protocols that run below an operating system
but above the hardware. With these protocols, a processor can be made fault-tolerant without modi-
fying the hardware, operating system, or application programs. A prototype implementation of the
protocols established that their cost was reasonable.

Most reasoning about system fault-tolerance is ad hoc and informal. With large, critical-
infrastructure systems, however, this approach and the confidence we can have in its conclusions are
unsatisfactory. Therefore, we investigated a new verification framework that is specialized to fault-
tolerance. Our framework permits more-natural specifications of fault-tolerance requirements than
general-purpose formalisms (e.g. temporal logic). Because it is specialized, the framework supports
efficient and mechanized analysis of system fault-tolerance. We implemented an initial prototype
software tool based on the framework. The tool has a graphical front end and hides from its users the
analysis process itself, making it something that could be included in the "survivable systems toolkit"
a system designer might turn to. :

4. Operating System Support for Agents

We investigated a new paradigm for structuring distributed systems: mobile agents. The effort
involved building operating system support for agents as well as attacking more fundamental prob-
lems.

On the practical side, our TACOMA (Tromsoe and Cornell Moving Agents) system is now in
daily use as a production platform and runs under HP-UX, Solaris, BSD Unix, and Linux. In contrast
to other agent-based approaches, TACOMA supports agents written in a variety of languages.
Currently, these languages include C, Java, Perl, Scheme, Python, and Tcl/Tk. A new version of
TACOMA, based on HTTP for communications and an ML server, is now being programmed. This
HTTP/ML version will make TACOMA a part of the world-wide web and, therefore, broadly accessi-
ble.

Our more fundamental agent-based work is driven by the agent-integrity and host-integrity
problems. The agent-integrity problem concerns ensuring that an agent computation is successfully
completed despite the presence of malicious and faulty hosts. Our work on this problem has led to
the study of cryptographic abstractions that can provide fault-tolerance. The host-integrity problem
concerns securing hosts so that they cannot be compromised by faulty or hostile agents. Here, we
have pursued the use of wrappers and compile-time analysis of agents.

Publications

(1) N. Klarlund and Fred B. Schneider. Proving nondeterministically specified safety properties
using progress measures. Information and Computation 107,3 (November 1993), 151-170.

2.

)

©))

4)

&)

©
Q)
®
®

(10)

(11

(12)

(13)

(14)

(15)

(16)

)

(18)

(19)

Fred B. Schneider. Avoiding AAS Mistakes. Proceedings of the Air Traffic Managerﬁent
Workshop (eds. L. Tobais, M. Tashker, A. Boyle). NASA Conference Publication 10151,
NASA Ames Research Center, 133-149.

Keith Marzullo, Fred B. Schneider, Jon Dehn. Refinement for fault-tolerance: An aircraft

* hand-off protocol. Foundations of Ultradependable Parallel and Distributed Computing,

Paradigms for Dependable Applications, Kluwer Academic Publishers, 1994, 39-54.

L. Fix and Fred B. Schneider. Reasoning about Programs by exploiting the environment.

Proc. 21st International Colloquium, ICALP’94 (Jerusalem, Israel, July 1994), Lecture Notes
in Computer Science, Volume 820, Springer-Verlag, New York, 328-339.

L. Fix and Fred B. Schneider. Hybrid verification by exploiting the environment. Formal
Techniques in Real Time and Fault Tolerant Systems (Luebeck, Germany, September 1994),
Lecture Notes in Computer Science, Volume 863, Springer-Verlag, New York, 1-18.

Fred B. Schneider. A role for formal methodists. Dependable Computing and Fault-Tolerant
Systems Vol. 9 (eds. F. Cristian, G. LeLann, T. Lunt), Springer-Verlag, 1995, 43-45.

Scott Stoller and Fred B. Schneider. Verifying programs that use causally-ordered message-
passing. Science of Computer Programming 24,2 (1995), 105-128.

Fred B. Schneider. On Traditions in Marktoberdorf. Deductive Program Design. (M. Broy,
ed.) ASI Vol. F152. Springer-Verlag, Heidelberg, 1-4. -

Fred B. Schneider. Notes on Proof Outline Logic. Deductive Program Design. (M. Broy,
ed.) ASI Vol. F152. Springer-Verlag, Heidelberg, 351-394

David Gries and Fred B. Schneider. Avoiding the undefined by underspecification. Com-
puter Science Today Recent Trends and Developments (Jan van Leeuwen, ed). Lecture Notes
in Computer Science, Vol. 1000, Spring-Verlag, 1995, 366-373.

D. Gries and Fred B. Schneider. Equational propositional logic. Information Processmg
Letters 53,3 (February 1995), 145-152.

Dag Johansen, Robbert van Renesse, and Fred B. Schneider. Operating system support for
mobile agents. Proc. Fifth Workshop on Hot Topics in Operating Systems HOTOS-V (Orcas
Island, Washington, May 1995), 42-45.

David Gries and Fred B. Schneider. A new approach to discrete teaching mathematics.
Primus V,2 (June 1995), 113-138.

Scott Stoller and Fred B. Schneider. Faster possibility detection by combining two
approaches. Proc. 9th International Workshop, WDAG ’95 (Le Mont-Saint-Michel, France,
Sept. 1995), Lecture Notes in Computer Science, Volume 972, Springer-Verlag, New York,
1995, 318-332.

David Gries and Fred B. Schneider. Teaching math more effectively, through the design of
calculational proofs. The Mathematical Monthly (October 1995), 691-697.

Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based Fault Tolerance. Proc.
Fifteenth ACM Symposium on Operating Systems Principles (Copper Mountain Resort,
Colorado, Dec. 1995), Operating Systems Review Vol. 29, No. 5, 1-11.

Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based Fault Tolerance. ACM Tran-
sactions on Computer Systems 14, 1 (Feb. 1996), 80-107.

Yaron Minsky, Robbert van Renesse, Fred B. Schneider and Scott Stoller. Proc. of the
Seventh ACM SIGOPS European Workshop "System Support for Worldwide Applications”
(Connemara, Ireland, Sept. 1996), ACM, New York. 109-114.

Dag Johansen, Robbert van Renesse, and Fred B. Schneider Supporting broad internet access
to TACOMA. Proc. of the Seventh ACM SIGOPS European Workshop "System Support for

3.

Worldwide Applications" (Connemara, Ireland, Sept. 1996), ACM, New York. 55-58.

(20) David Gries and Fred B. Schneider Adding the Everywhere Operator to Propositional Logic.
Submitted to The Journal of Logic and Computation.

Patents

(1) Fault tolerant computer system with shadow virtual processor. United States patent number
5,488,716, Jan. 30, 1996. Co-inventors: E. Balkovich, B. Lampson, and D. Thiel.

(2) Transparent fault tolerant computer system. Patent disclosure filed Dec 1, 1995. Co-
inventors: Thomas C. Bressoud, John E. Ahern, Kenneth P. Birman, Robert C.B. Cooper,
Bradford B. Glade, and John D. Service.

